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Abstract

As temperatures change worldwide, the pattern and competency of disease vectors will

change, altering the global distribution of both the burden of infectious disease and the risk

of the emergence of those diseases into new regions. To evaluate the risk of potential sum-

mer dengue outbreaks triggered by infected travelers under various climate scenarios, we

develop an SEIR-type model, run numerical simulations, and conduct sensitivity analyses

under a range of temperature profiles. Our model extends existing theoretical frameworks

for studying dengue dynamics by introducing temperature dependence of two key parame-

ters: the mosquito extrinsic incubation period and the lifespan of mosquitoes, which empiri-

cal data suggests are both highly temperature dependent. We find that changing

temperature significantly alters dengue risk in an inverted U-shape, with temperatures in the

range 27-31˚C producing the highest risk. As temperatures increase beyond 31˚C, the

determinants of dengue risk begin to shift from mosquito biting rate and carrying capacity to

the duration of the human infectious period, suggesting that changing temperatures not only

alter dengue risk but also the potential efficacy of control measures. To illustrate the role of

spatial and temporal temperature heterogeneity, we select five US cities where the primary

dengue vector, the mosquito Aedes aegypti, has been observed, and which have had den-

gue cases in the past: Los Angeles, Houston, Miami, Brownsville, and Phoenix. Our analysis

suggests that an increase of 3˚C leads to an approximate doubling of the risk of dengue in

Los Angeles and Houston, but a reduction of risk in Miami, Brownsville, and Phoenix due to

extreme heat.

Introduction

The global reported incidence of Dengue fever, a mosquito-borne disease caused by dengue

virus [1], has increased 8-fold in the past two decades. Almost half of the world’s population is
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now at risk [2], with an estimated 390 million new cases every year [3]. No effective vaccine is

broadly available [4], and the primary way to mitigate the disease is through control of or pro-

tection from mosquito populations [5–7]. Mosquitoes are a necessary intermediate host for

the dengue life-cycle. Mosquitoes are ectothermic, and their life cycle is very sensitive to envi-

ronmental temperature, which is a key driver of annual dengue case counts [8–13].

The extrinsic incubation period (EIP) is the period from when a mosquito ingests an infec-

tious blood meal to when it becomes infectious (competent to transmit dengue virus). As tem-

perature increases, EIP decreases up to a point, suggesting a proportional relationship between

temperature and dengue risk. However, for transmission to take place, the mosquito lifespan,

which declines with increasing temperature after a certain point, must exceed the EIP [9, 13–

17]. Recent work has quantified the impact of EIP dependence on temperature [14, 18–20].

Considerable modeling work has been done on the effects of temperature dependence of

mosquito life traits on arbovirus transmission [21–25]. Mayton et al. established the impor-

tance of mosquito age structure on transmission potential, which we include in our model as a

temperature dependent lifespan [26]. As temperature changes, the implicit age structure of the

mosquito population also changes. Previous models have adopted varied approaches to study-

ing the effects of temperature dependent parameters on disease dynamics. Mordecai et al. inte-

grated multiple temperature dependent parameters to study the relationship of temperature

on the epidemic threshold [21], while Kamiya et al. used an explicit epidemic model to exam-

ine the effect of temperature dependent EIP while fixing other model parameters [18]. Our

study extends these approaches by allowing both lifespan and EIP to vary with temperature in

a explicit mechanistic model that both allows us to simulate dynamics and define the epidemic

threshold. This approach allows us to characterize temperature-dependent dengue risk more

fully by including key drivers of the life-history trade-offs for both dengue and its mosquito

hosts. The effects of a changing climate on mosquito-borne disease are not monotonic, and

increasing temperatures can have complex effects not only the global distribution of dengue

but also on mitigation strategies [13, 18, 21, 27].

Endemic dengue has been historically limited to tropical climates, since A. aegypti cannot

survive below 8˚C [28]. However, single dengue outbreaks initiated by infected travelers have

recently been confirmed in temperate regions [10, 29, 30]. Outbreaks are possible in cities with

warm summers and mild winters near the northern borders of A. aegypti ranges. We have cho-

sen to study the potential for outbreaks in two groups of U.S. cities that together represent a

range of mean temperatures from 20.6˚C to 31.8˚C: (1) those where the mosquitoes are found,

and limited outbreaks have occurred from imported cases in travelers (Los Angeles, Houston,

and Phoenix) [31]; and (2) those where the mosquitoes are found, and autochthonous (locally

transmitted) outbreaks have occurred (Miami, Brownsville) [31, 32]. The impact of rising tem-

peratures on the risk of dengue outbreaks in the southern United States is an open question.

To explore this question, we adapt the mathematical models developed in [7, 33] to include

temperature dependence of the EIP and mosquito lifespan parameters. Our model is com-

posed of ordinary differential equations that describe the time evolution of an outbreak of den-

gue between humans and adult female mosquitoes. We consider a range of scenarios

characterized by different temperatures and initial conditions to understand how temperature

affects both dengue risk and mitigation. We compute four quantities of interest (QOIs) to eval-

uate disease invasion potential, transience and severity of outbreaks: (1) the basic reproduction

number; (2) the final epidemic size; (3) the timing of the epidemic peak; and (4) the magnitude

of the epidemic peak. We compare and evaluate not only the impact of temperature-dependent

mosquito lifespan and EIP, but also how the uncertainty in these values impacts disease

dynamics and global parameter sensitivity. It then becomes possible to provide a spectrum of

possible disease outcomes under a range of climate change scenarios.
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Materials and methods

Model development

We model the time evolution of a single dengue outbreak in a location without endemic den-

gue transmission using a compartmental model that tracks human and mosquito populations.

The model assumes that the human population is large enough such that mosquitoes are not

limited by blood meal availability and the outbreak period is short enough that the total

human population remains constant.

The model (Fig 1) divides the total human population, Nh, into four classes: susceptible Sh,
exposed Eh, infectious Ih and recovered Rh. The susceptible humans, Sh, move to the exposed

class when the human become infected by the bite of an infectious mosquito. Exposed humans,

Eh, move to the infectious class, Ih, in which humans can infect mosquitoes. Infectious

humans, Ih, recover and move to the recovered class, Rh. Importantly, our exposed class is

comprised of the persons who were infected but not yet infectious. We model the exposed

period (latent period) with the intrinsic incubation period (IIP), which is often inferred from

the time between a human being infected to having detectable virus [14, 34]. Given that our

model is only applicable to a single outbreak, we assume that recovered humans acquire

immunity to the dengue virus for the given season [35, 36].

The total mosquito population, Nv, is divided in three classes: susceptible Sv, exposed Ev,
and infectious Iv. We assume that mosquitoes enter the susceptible class through birth and

that all female mosquitoes are born susceptible. Then susceptible mosquitoes move to the

exposed class Ev via biting a dengue infected human. Exposed mosquitoes move to the infec-

tious class Iv after completing their extrinsic incubation period, where they remain for the

rest of their natural life. We assume that dengue infection does not affect the lifespan of a

mosquito. The demographics of the mosquito population follow a logistic growth pattern,

i.e. the mosquito birth rate decreases linearly as the populations’ size approach a constant

carrying capacity Kv controlled by the availability of egg-laying sites and competition

between larvae [7].

Following the flow diagram given in Fig 1 and the modeling assumptions described above

yields the system of equations:

dSh
dt
¼ � lhðtÞSh ð1Þ

Fig 1. Model diagram. Compartmental diagram for dengue virus transmission and subsequent disease progression

across humans and mosquitoes. Susceptible human Sh become exposed to dengue, Eh, by the bite of an infectious

mosquito Iv. Exposed persons become infectious, Ih, after an incubation period, after which they are removed, Rh, once

the infection is cleared. Susceptible mosquitoes, Sv, enter the system at the rate hv(Nv) where they either die or become

exposed, Ev, when they bite an infected person. Exposed mosquitoes become infectious, Iv, after the EIP and leave the

system though natural death.

https://doi.org/10.1371/journal.pclm.0000115.g001
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dEh
dt
¼ lhðtÞSh � nhEh ð2Þ

dIh
dt
¼ nhEh � ghIh ð3Þ

dRh
dt
¼ ghIh ð4Þ

dSv
dt
¼ hvðNvÞNv � lvðtÞSv � mvSv ð5Þ

dEv
dt
¼ lvðtÞSv � nvEv � mvEv ð6Þ

dIv
dt
¼ nvEv � mvIv: ð7Þ

The total population sizes are Nh = Sh + Eh + Ih + Rh and Nv = Sv + Ev + Iv. The mosquito birth

rate is [7]:

hvðNvÞ ¼ Cv �
rv
Kv
Nv; ð8Þ

whereCv is the natural birth rate in the absence of density dependence, rv =Cv − μv is the

intrinsic growth rate of mosquitoes in the absence of density dependence, and Kv is the carry-

ing capacity of mosquitoes in the region considered.

The forces of infection from mosquito to humans, λh(t), and from human to mosquitoes,

λv(t), are [33, 37]:

lhðtÞ ¼
avNv
Nh

� bhv �
Iv
Nv
¼
avbhvIv
Nh

and lvðtÞ ¼
avbvhIh
Nh

; ð9Þ

under the assumption that mosquitoes are not limited by available blood meals. av is the con-

stant human-biting rate of the mosquitoes, which is defined as the average number of bites to

humans by each mosquito per unit time; βhv is the infectivity of an infectious mosquito, which

is defined as the probability of pathogen transmission from an infectious mosquito to a suscep-

tible human given that a contact between the two occurs; βvh is the infectivity of an infectious

human, which is defined as the probability of pathogen transmission from an infectious

human to a susceptible mosquito given that a contact between the two occurs; νh is the average

rate of time progression of humans from the exposed state to the infectious state; γh is the aver-

age human recovery rate; νv is the average rate of time progression of mosquitoes from the

exposed state to the infectious state; and μv is the mosquito per-capita natural death rate.

Table 1 summarizes the model parameter descriptions and their units.

Temperature-dependent parameters

We used previous models and data reported from the literature to estimate the temperature

dependence in the EIP and lifespan parameters for A. aegyptimosquitoes. The temperature-

dependent parameter values and ranges for the EIP (1/νv) were taken from the Bayesian log-

normal time to event model fit by Chan and Johansson 2012 [14]. The mean value at each tem-

perature is the mean of the posterior distribution and the 95% interval is the middle 95% of the
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posterior distribution as presented in Tables 2 and 3. These values were explicitly provided for

25˚C and 30˚C. For 20˚C, 35˚C, and the temperatures of the three United States cities of inter-

est, these values were estimated from figures. For mosquito lifespan (1/μv), we compiled tem-

perature lifespan data on A. aegypti from various studies at temperatures greater than or equal

to 15˚C [38–40]. We then fit generalized linear models to the data, using the four distributions

explored by [14], namely, lognormal, gamma, Weibull, and exponential (see S1 Table for more

details). We explored explanatory variables up to degree five polynomials of temperature for

all models; however, we used a degree three temperature polynomial for all model types, based

on Likelihood Ratio Tests between nested models. All four model types fit the data to a similar

extent: a different model performed the best for each of Akaike Information Criteria (AIC)

and mean squared error (MSE), and the AIC values were within 20 units of each other. There-

fore, we selected the Gamma regression fit for simplicity. We used the prediction from the

Gamma regression at a given temperature as the mean parameter value. We then calculated a

95% prediction interval of the modeled mosquito lifespan at every temperature of interest

using the method developed by [41]. We summarized these values in Tables 2 and 3 at each

temperature of interest.

The 2021 mean temperatures for Los Angeles, Houston, Miami, Brownsville, and Phoenix

over June-October were 20.6˚C, 27.7˚C, 28.4˚C, 28.9˚C, and 31.8˚C respectively (Table 3).

Monthly temperatures were obtained from [42].

Stability analysis

We mathematically analyzed Model (1)–(7) to define the conditions under which the model

describes feasible dengue outbreaks and to find the equilibria of the system and their

Table 1. Model parameters and their units.

Parameters Description Units

av Human-biting rate of mosquitoes 1/days

βhv Infectivity of an infectious mosquito dimensionless

βvh Infectivity of an infectious human dimensionless

g� 1
h Average human infectious period days

m� 1
v Average mosquito lifespan days

n� 1
v Average extrinsic incubation period (EIP) days

n� 1
h Average intrinsic incubation period (IIP) days

Cv Per capita recruitment rate of mosquitoes 1/days

Kv Carrying capacity of mosquitoes mosquitoes

H0 Total human population size humans

https://doi.org/10.1371/journal.pclm.0000115.t001

Table 2. Parameter values for the EIP and mosquito lifespan by temperature.

Temperature Average EIP (n� 1
v ) Average lifespan† (m� 1

v ) Reference

Mean 95% Interval Mean 95% Interval

20˚C 20.0 [9, 39.1] 24.9 [14.6, 38.6] [14], S1 Table

25˚C 15.0 [5.0, 33.0] 30.1 [17.7, 46.2] [14], S1 Table

30˚C 6.5 [2.4, 15.0] 27.6 [16.2, 42.4] [14], S1 Table

35˚C 5.5 [2, 12] 11.2 [6.4, 17.8] [14], S1 Table

† Parameter values estimated in this work

https://doi.org/10.1371/journal.pclm.0000115.t002
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corresponding stability properties. Each equilibrium provides a possible outcome of the den-

gue outbreak and its corresponding stability properties define the conditions under which a

particular result occurs.

In the S1 Appendix, we proved that Model (1)–(7) is epidemiologically and mathematically

well-defined in the domain D ¼ fðSh;Eh; Ih;Rh; Sv;Ev; IvÞ 2 R
7

: 0 � Sh;Eh; Ih;Rh � H0; 0 �

Sv; Iv;Ev � Kv; H0 ¼ Sh þ Eh þ Ih þ Rh and Sv þ Iv þ Ev � Kvg and that for any initial condi-

tion in D there is a unique solution of System (1)–(7) which remains in D for all time t> 0.

Setting the right-hand sides of the Eqs (1)–(7) equal to zero yields the two equilibria:

x�
0
¼ ðS�h; 0; 0;R

�

h; 0; 0; 0Þ and x�
1
¼ ðS�h; 0; 0;R

�

h;Kv; 0; 0Þ;

where S�h and R�h are any two real numbers. The two equilibrium points have biological mean-

ing when x�
0

and x�
1

are in D, i.e., 0 � S�h � H0, 0 � R�h � H0 and R�h ¼ H0 � S�h. The two points

x�
0

and x�
1

are both disease-free equilibria, i.e., I�h ¼ 0, E�h ¼ 0, E�v ¼ 0 and I�v ¼ 0. However, in

the steady state x�
0

the mosquito population dies out S�v ¼ 0; while in the steady state x�
1

the

mosquitoes achieve their maximal population size Kv. The following theorems provide the cor-

responding stability properties of each steady state. We provide their proofs in the S1

Appendix.

Theorem 1. Suppose that R�h ¼ H0 � S�h and H0 � S�h � 0. Then x�
0
¼ ðS�h; 0; 0;R

�
h; 0; 0; 0; Þ

exists for all the parameter values and x�
0
is unstable.

Theorem 2. Suppose that R�h ¼ H0 � S�h and H0 � S�h � 0. Then x�
1
¼ ðS�h; 0; 0;R

�
h;Kv; 0; 0Þ

exists for all the parameter values and x�
1
belongs to the set Xs = {(H0 − Rh, 0, 0, Rh, Kv, 0, 0): 0�

Rh�H0}, which is a local attractor set of the solution set given by System (1)–(7) whenR0 < 1.

x�
1
is unstable whenR0 > 1, where

R0 ¼
nv

mv þ nv
�
avbvh
ghH0

Kv �
avbhv
mv

S�h
H0

: ð10Þ

The threshold value R0 is known as the basic reproduction number. The
ffiffiffiffiffi
R0

p
is often

interpreted as the expected number of human to mosquito or mosquito to human secondary

cases [7, 43]. Here, R0 characterizes the stability of the disease free equilibrium x�
1

which is

unstable and an outbreak occurs when R0 > 1. In this case, the infective curve Ih(t) first

increases from an initial Ih(0) near zero, reaches a peak, and then decreases toward zero as a

function of time [44]. As time goes to infinity, the final epidemic size is R�h ¼ H0 � S�h which

satisfies 0 � R�h � H0.

We expressed R0 in three terms. The first term, νv/(μv + νv), is the probability that an

exposed mosquito will survive the extrinsic incubation period. The second term, avβvhKv/

Table 3. Temperature-dependent parameter values for five United States cities.

Temperature Average EIP (n� 1
v ) Average lifespan† (m� 1

v ) Reference

Mean 95% Interval Mean 95% Interval

Los Angeles 20.6˚C� 19.0 [8.5, 38.0] 24.5 [14.8, 39.4] [14], S1 Table

Houston 27.7˚C� 11.0 [3.0, 22.0] 30.8 [18.1, 47.2] [14], S1 Table

Miami 28.4˚C� 9.5 [3.3, 19.5] 30.2 [17.7, 46.4] [14], S1 Table

Brownsville 28.9˚C� 8.0 [2.8, 18.5] 29.6 [17.4, 45.5] [14], S1 Table

Phoenix 31.8˚C� 6.0 [2.3, 14.0] 22.5 [13.2, 34.6] [14], S1 Table

� Average temperature from June-October 2021.
† Parameter values estimated in this work

https://doi.org/10.1371/journal.pclm.0000115.t003
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(γhH0), is the average number of newly infections that result from human to mosquito. The

third term, avbhvS�h=ðmvH0Þ, is the average newly infections that result from mosquito to

human.

Sensitivity analysis

We employed two sensitivity analysis methods: Latin Hypercube Sampling (LHS) and the

extended Fourier Amplitude Sensitivity Test (eFAST), to quantify the relative impact of model

parameter uncertainties on the quantities of interest (QOIs): basic reproduction number (R0Þ,

epidemic peak and final epidemic size. All sensitivity analysis was performed through numeri-

cal simulations at 20˚, 25˚, 30˚C, and 35˚ temperature scenarios, from day 0 to 1500 (time rela-

tively large that numerically the disease die out at and beyond of it).

For the Latin Hypercube Sampling [45], we used a uniform distribution to generate 10,000

sampled sets from the parameter space of EIP (1/νv) and mosquito lifespan (1/μv) (Table 2).

From these sampled sets, we computed the basic reproduction number (R0) across these

parameters and explored at what temperatures the relationship between EIP (1/νv) and mos-

quito lifespan (1/μv) parameters yielded non-epidemic scenarios (R0 < 1).

For the eFAST method [46], we generated 1,000 samples for each parameter and computed

the sensitivity indices of the epidemic peak and final epidemic size. We varied all the parame-

ters in Table 1 simultaneously within the range of values as presented in Tables 2 and 4. We

excluded the parameterH0 in our analysis, despite its impact on the vector-to-host and total

susceptible ratios and therefore our QOIs. The qualitative behaviors of the sensitivity indices

are both similar when varying or fixing H0, as we assumed that Kv increases proportionally

withH0 and both parameters have the same order of magnitude (the numerical results are not

presented in this work). Additionally, we excludedH0 because we aimed to explore the vari-

ability of the QOI to parameters that could be altered through interventions, such as mosquito

repellent and reducing vector populations, in order to mitigate disease spread. The resulting

magnitudes of the sensitivity indices from the eFAST determine the importance of the parame-

ters on the QOI variability [46, 47]. Specifically, eFAST computes the first order and total

order sensitivity indices. The first order sensitivity index represents the fractional contribution

of a single parameter to the QOI variance, while the total order sensitivity index takes into

account parameter interactions. The difference between the total order and first order is the

interaction order sensitivity index, which represents the sole impact of non-linear interactions

between parameters on QOI variance. The higher the sensitivity indices are for a given param-

eter, the larger the influence that parameter exerts on the variance of the QOI. We primarily

examined the first order and interaction sensitivity indices for our QOIs, and presented results

through visualizations of these metrics.

Table 4. Non-temperature varying parameter values used in simulations.

Parameter Baseline Value Range Reference

av 0.75 [0.063, 1] [7, 48]

βhv 0.33 [0.10, 0.75] [7]

βvh 0.33 [0.10, 0.75] [7]

g� 1
h 6 [4, 12] [7]

n� 1
h 6.1 [3, 14] [7, 14]

Cv 0.30 [0.28, 0.32] [7]

Kv 1

2
H0

1

4
H0;H0

� �
[7, 49]

H0 1 × 105 [1 × 104, 2 × 105] [7, 50]

https://doi.org/10.1371/journal.pclm.0000115.t004
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Numerical simulations of single outbreaks

We used our model to numerically simulate summer dengue outbreaks at the current mean

temperature and at a 3˚C temperature increase over June-October for Los Angeles, Houston,

Miami, Brownsville, and Phoenix (Table 3). To evaluate the effects of temperature on the risk

of dengue outbreaks for these cities, we computed the four QOIs for each city’s simulated out-

breaks. Note that to capture the seasonality of the mosquitoes and obtain realistic final epi-

demic sizes we set the mosquito natural birth rate (ψv) to zero after 180 days into the

simulation. Each QOI was computed from simulated outbreaks using the mean values for all

parameters. To present the range of possible QOIs in each United States city, we also calculated

the QOIs at combined maximum and minimum values of EIP and mosquito lifespan from the

95% intervals, with all other parameters at their mean values. Namely, we examined the follow-

ing combinations: the largest EIP and smallest lifespan (lowest possible disease spread) and the

smallest EIP and largest lifespan (highest possible disease spread) (Table 3) for a particular

mean temperature.

In all numerical simulations and sensitivity analyses, we used the parameter values in

Table 4 and all initial conditions are zero except Ih(0) = 1, Sh(0) =H0 − 1, and Sv(0) = Kv, with

H0 = 1 × 105 for the sensitivity analysis andH0 being approximations for the 2020 populations

for the five United States cities (Los Angeles: 13,109,903; Houston: 7,154,478; Miami:

6,138,333; Brownsville: 421,017; Phoenix: 5,059,909) [51].

Results

Impact of temperature-dependent parameters on basic reproduction

number

Fig 2 shows the value of R0 as a function of the range of values of EIP (1/νv) and mosquito life-

span (1/μv) consistent with a given temperature. Because R0 � 1 is the threshold criteria for

an outbreak to occur, the overall inverted ‘U’ shaped effect of temperature on the probability

of an outbreak is clear. At low temperatures (20˚C), much of the parameter range is not consis-

tent with an outbreak; that is, at this temperature, our theory predicts relatively few outbreaks

of small size. However, an increase of 10˚C leads to a nearly guaranteed outbreak scenario if

dengue is present. Between 30˚C and 35˚C, the risk of an outbreak plummets to nearly zero

due to the fact that almost all of the infected mosquitoes die before they become infectious.

Overall, at all temperatures, mosquito lifespan has a stronger effect on R0 than EIP.

Sensitivity of the epidemic peak and final outbreak size to parametric

variance at different temperatures

Figs 3 and 4 show the sensitivity of the peak and final epidemic size to each parameter at 30˚C.

Both QOIs show very similar patterns with the mosquito biting rate having the largest influ-

ence on both QOIs; 50–60% of variance in the QOIs is explained the variance in the biting rate

and the interaction between biting rate and other parameters. One key difference in the sensi-

tivity of the QOIs is that the peak epidemic size is much more sensitive to the human infectious

period than is the final epidemic size. That is, interventions designed to shorten the period that

infected humans are contagious are more effective at reducing the peak size of the epidemic,

but less effective at reducing the overall risk. For both QOIs, the interaction of multiple param-

eters generally explains more of the variance than do the direct effects of most parameters,

highlighting the non-linear nature of dengue transmission.

Temperature has a large effect on the sensitivity of the QOIs to parametric variance (Fig 5).

As expected, the parameters with direct temperature variability display differential effects on
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the QOIs at different temperatures. Consistent with the R0 analysis, the role of the mosquito

lifespan on the QOIs is much higher at temperatures greater than 30˚C because the mosquito

lifespan drastically decreases at these temperatures. Above 30˚C, the infectious mosquitoes

may die before they become infectious and therefore there is a low probability of experiencing

an outbreak at 35˚C. However, temperature also affects the role of parameters that do not

directly have temperature-dependent forms. The impacts of the mosquito carrying capacity

and human infectious period, which at 30˚C are shown to explain a significant proportion of

the variance of the peak of infected humans, increase with temperature only up to 30˚C. While

sensitivity analysis at a fixed temperature of 30˚C demonstrates that a very small proportion of

the variance in the final epidemic size is due to the human infectious period (Fig 4), exploring

across temperatures, we see that the sensitivity of the human infectious period nearly doubles

at 35˚C. In contrast, the role of the mosquito carrying capacity on final epidemic size tends to

decrease as temperature increases.

Generally, while the first order sensitivity of the QOIs to the EIP and mosquito lifespan

decreases between 25˚C and 30˚C, the first order sensitivity of the QOIs to the human infec-

tious period and mosquito carrying capacity increases. Temperatures between 25˚C and 30˚C

also yield the largest dengue outbreaks (Figs 2 and 7).

Effect of temperature on potential dengue dynamics in Los Angeles,

Houston, Miami, Brownsville, and Phoenix

We examine simulated dengue outbreaks for five United States cities (Los Angeles, Houston,

Miami, Brownsville, and Phoenix) at their current (2021) mean temperatures from June to

October and at a 3˚C increase from the current mean temperature. Under the 3˚C increase

(from (27.7˚ to 30.7˚C), Houston has the largest epidemic peak increase (Fig 6). Brownsville

has the largest potential peak at current mean temperatures. With a 3˚C increase, Los Angeles

Fig 2. Impact of EIP and mosquito lifespan on R0. This figure shows the basic reproduction number (R0) for the possible values of EIP (1/νv) and

mosquito lifespan (1/μv) at 20˚C, 25˚C, 30˚C, and 35˚C. Note that since possible ranges of these parameter values differ by temperature (Table 3), the

horizontal and vertical axes vary by panel. At 35˚C, there is the largest proportion of the parameter space that yields non-outbreak scenarios. At both

25˚C and 30˚C, the majority of possible EIP and mosquito lifespan values generate R0 � 1 such that an outbreak occurs.

https://doi.org/10.1371/journal.pclm.0000115.g002
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and Houston’s epidemic peaks increase and Miami and Brownsville’s decrease, while an out-

break does not occur in Phoenix. Generally, temperature increases up to around 31˚ corre-

spond to increased disease spread. However, temperatures higher than 31˚C lead to a decrease

in disease spread, and by 35˚C there is no dengue outbreak. At the current temperatures, all

five cities are at risk of a dengue outbreak, however cities with temperatures around 27–31˚C

tend to have the largest outbreaks (as seen in Houston’s simulated outbreaks).

Houston also has a higher simulated epidemic peak, final epidemic size, and basic repro-

duction number than either Los Angeles or Phoenix (Fig 7). In addition, Houston has the

potential for a much larger epidemic peak and final epidemic size than do those cities, as dem-

onstrated by the bars which represent the range of possible values. Los Angeles and Phoenix

tend to have similar values for all QOIs except the time of epidemic peak, where Phoenix’s epi-

demic peak occurs slightly earlier than Los Angeles’. However, Phoenix has the potential for a

higher epidemic peak and final epidemic size than does Los Angeles. Of the cities, the simu-

lated outbreak in Houston leads to the highest number of infected individuals.

Fig 3. Sensitivity of epidemic peak to parameters at 30˚C. This figure shows the the first and interaction order sensitivity (horizontal axis) of

epidemic peak to each parameter (panel). The peak of infectious humans is most sensitive to changes in the biting rate (av), mosquito carrying capacity

(Kv), and human infectious period (γh).

https://doi.org/10.1371/journal.pclm.0000115.g003
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Discussion

We analyzed a standard mosquito-born disease model to quantify the impact of key tempera-

ture-dependent transmission parameters to dengue epidemic outbreaks in three United States

cities. We found that all five cities explored (Los Angeles, Houston, Miami, Brownsville, Phoe-

nix) are at risk of a dengue outbreak at their current average temperatures, and that Houston

specifically has the highest risk of a large disease burden. With increasing temperatures due to

climate change, Los Angeles and Houston could potentially see larger dengue outbreaks, while

risk may decrease in Miami and Brownsville. The temperatures in Phoenix may become

incompatible with a dengue outbreak. Furthermore, temperatures between 25˚C and 30˚C

yield A. aegypti EIP and lifespan values that are most conducive to disease spread, while both

lower and higher temperatures tend to generate smaller or no outbreaks. Of the explored

parameters, changes in biting rate and mosquito carrying capacity have the largest influence

on the variation of the number of infected humans. While the sensitivity of the majority of

parameters do not vary by temperature, as temperature increases up to 30˚C, the sensitivity of

Fig 4. Sensitivity of final epidemic size to parameters at 30˚C. This figure shows the the first and interaction order sensitivity (horizontal axis) of final

epidemic size to each parameter (panel). The final epidemic size is most sensitive to changes in the biting rate (av), mosquito carrying capacity (Kv), and

mosquito lifespan (1/μv).

https://doi.org/10.1371/journal.pclm.0000115.g004
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the EIP and mosquito lifespan for the epidemic peak and final epidemic size tend to decrease,

and the sensitivity of the human infectious period tends to increases.

Previous studies have supported the assertion that a shorter EIP can result in increased

transmission [9, 17]. While our results generally agree with this conclusion, we also show that

there is a trade off between EIP and mosquito lifespan. Between 25–30˚C, the EIP is small and

mosquito lifespan is relatively large, and therefore larger and more quickly moving outbreaks

occur at these temperatures. However, the EIP decreases as temperature increases, while adult

mosquito lifespan also starts decreasing at 30˚C. Our model shows that at around 35˚C there is

Fig 5. Sensitivity of the QOIs to parameters varied by temperature. This figure shows the first and interaction order sensitivity indices of both the

peak number of infected humans (A) and final epidemic size (B) to parameters whose sensitivity varied by temperature. Between 20˚C and 30˚C, the

sensitivity of the QOIs to EIP (1/νv) and mosquito lifespan (1/μv) decreases while the sensitivity of the QOIs to human infectious (1/νh) and mosquito

carrying capacity (Kv) tends to increase. First order sensitivity of the final epidemic size to all parameters except carrying capacity tends to be high at

35˚C.

https://doi.org/10.1371/journal.pclm.0000115.g005

Fig 6. Infected human dynamics for United States cities. This figure depicts the possible epidemic trajectory of dengue in five United States cities at

the current mean temperature from June-October for each city and at a 3˚C temperature increase from the current mean temperature. At current mean

temperatures, fastest disease progression and highest numbers of infected humans are observed Houston, Miami, and Brownsville. With a 3˚C mean

temperature increase, disease spread decreases for Miami and Brownsville, and is eliminated in Phoenix. In all cities, an outbreak occurs at the current

mean temperature.

https://doi.org/10.1371/journal.pclm.0000115.g006
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a high probability that even if dengue is introduced, there would be no outbreak. Our sensitiv-

ity results also show that total interaction order sensitivity is larger than single order for the

final epidemic size, and to a lesser extent, the peak. This indicates that temperature impacts on

several parameters may serve as a multiplier to risk changes, having a larger impact than

would be indicated by individual parameter sensitivity alone.

Our model also indicates where interventions may have the most relative benefit. Overall,

our quantities of interest are most sensitive to the biting rate and mosquito carrying capacity.

We should then target interventions at these two parameters (repellent to reduce bites, reduc-

ing mosquito density). Interestingly, between 25–30˚C, sensitivity of model output to EIP and

mosquito lifespan decreases, while sensitivity to the human infectious period increases. This

indicates that as temperatures increases within this range (the range of highest disease trans-

mission), human interventions (such as quarantine or preventing onward transmission to

mosquitoes) may become more important to limiting disease spread. Also, at higher tempera-

tures, the QOIs are much more sensitive to mosquito lifespan, so reducing the mosquito life-

span can provide more impact and push the model into a zone where outbreaks are unlikely.

The final epidemic size is more sensitive to the mosquito lifespan while the epidemic peak is

more sensitive to the human infectious period.

Based on our model and its assumptions, regions of the southern United States, including

Houston and Los Angeles, could be at increased risk of dengue as temperature rises. However,

our models also show that some regions, such as Phoenix, may have reduced risk if tempera-

tures become too hot to sustain an outbreak. Of the cities explored, Houston has the largest

risk, and generally temperatures between 27–31˚C see the largest outbreaks in our analysis.

There has already been limited dengue transmission in Houston and Florida [38, 52, 53]. As

Fig 7. Quantities of interest for United States cities. This figure shows the epidemic peak, final epidemic size, basic reproduction number (R0), and

time of epidemic peak for Los Angeles, Houston, Miami, Brownsville, and Phoenix. Error bars demonstrate the potential variation in the QOIs for each

city. Houston has the potential for a much larger epidemic peak and final epidemic size than the other four cities. Houston, Miami, and Brownsville

tend to have higher R0s than the other two cities. The QOIs of the simulated outbreaks for Los Angeles and Phoenix tend to take similar values.

https://doi.org/10.1371/journal.pclm.0000115.g007
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temperatures increase we can expect most cities in the southern United States to have a higher

risk for dengue. However, this is not limitless, and as temperatures increase above 31˚C, out-

breaks get smaller and at 35˚C there are no outbreaks. A caveat to our results is that mosquito

population dynamics also depend on water availability for their life cycle, and adult lifespans

also depend on humidity. So, for example, desert regions such as Phoenix may have less poten-

tial due to low humidity. Additionally, human infrastructure and behavior impacts the size

and duration of dengue outbreaks. In regions with screens, air conditioning, good sanitation

and water infrastructure, and access to mosquito repellent, the potential for outbreaks is

decreased.

There are several limitations to this work. First, we only consider temperature dependence

and not other environmental characteristics including humidity, precipitation, and vegetation.

We also only consider the impacts of temperature on the extrinsic incubation period and mos-

quito lifespan, but other parameters have been shown to be temperature dependent, including

the mosquito to human ratio, biting rate, fecundity, egg viability, larval density, development

rate, and survival [54–56]. The relationships among these biological parameters, as well as

their dependencies on temperature and impacts on disease transmission, are understood to be

nonlinear, and in some cases, contradictory. For example, warmer temperatures (within lim-

its) tend to increase fecundity and decrease development times, while decreasing EIP, which

tends to increase mosquito abundance and therefore disease transmission. However, warmer

temperatures (within limits) can decrease adult mosquito lifespans, which can reduce or even

close transmission windows [10, 21, 23]. The temperature dependence in our model and simu-

lations is based on mean temperatures, and does not take into account diurnal fluctuations,

which have been shown to impact dengue transmission [10, 57]. Additional modeling studies

are needed to incorporate these complexities, and to increase the accuracy of scenario-based

projections.

Our sensitivity analysis is dependent on the parameter ranges we select which, while based

on values from the literature, could be inaccurate. Similarly, we choose from a uniform range

across the parameters, while some parameter combinations may be more or less likely than

others. In the future, we plan to incorporate humidity and/or precipitation into the models

and expand temperature dependence to other parameters. It may also be important in future

iterations of this work to incorporate environmental dependent parameters as distributional

forms within the model, and to validate against human case counts and mosquito data across a

range of temperature and humidity profiles. Our contribution provides a starting place for bet-

ter capturing the impacts of temperature on multiple parameters and disease dynamics, in

addition to static quantities such as the basic reproduction number.
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