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Abstract

The COVID-19 pandemic was a powerful reminder that ex-
isting societal inequalities get amplified during public health
emergencies. In response to the pandemic, organizations such
as the CDC, WHO, and public health departments developed
frameworks for equitable allocation of vaccines, using well-
established ethical principles as a foundation. The overall
goal of this paper is to translate these policy frameworks into
a computational framework that can be used by public health
departments to equitably allocate vaccines in a transparent
manner during the initial stages of a pandemic, when vaccine
demand far exceeds supply.
We start by developing a mathematical model for disease-
spread that accounts for social vulnerability, geographic bar-
riers to healthcare access, and differences in work constraints.
On the basis of this model, we present multiple optimization
formulations of a vaccine allocation problem that aims to re-
duce overall disease prevalence while also reducing disparity
in outcomes for a given “protected class” relative to the gen-
eral population. We present simple, scalable, and transparent
algorithms for our optimization formulations.
Our experiments focus on allocating vaccines at the census
block group granularity in Johnson County, Iowa. Our exper-
imental test bed incorporates social vulnerability index, a hos-
pital accessibility index, and essential worker status into Co-
vaSim, a state-of-the-art agent-based COVID-19 model. Our
experiments lead to two main takeaways. First, it is possible
to substantially reduce disparity in the outcomes of the pro-
tected class (for various choices of this class) with negligible
worsening in overall disease-prevalence. Second, it is critical
for disparity to be considered at all stages of the computa-
tional framework, e.g., incorporating it into the optimization
formulation without considering it in the modeling stage has
very limited value.

Introduction
Equitable vaccine allocation, a critical challenge in pub-
lic health, aims to balance its goals of minimizing disease
spread and ensuring fair outcomes resulting for various, and
especially vulnerable, subpopulations. This problem is par-
ticularly important during pandemics, where vaccines are of-
ten in short supply (Srivastava and Priyadarshini 2021; Liu
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and Lou 2022), and disparities in access can exacerbate ex-
isting health inequalities (Khan et al. 2023; Gu et al. 2020;
Pijls et al. 2021; Tipirneni et al. 2022). Effective vaccine
allocation strategies must account for both epidemiologi-
cal dynamics and societal considerations, such as protect-
ing vulnerable populations and reducing disparities across
demographic groups.

Tasked by the Centers for Disease Control (CDC) and the
National Institutes of Health (NIH), the National Academies
of Sciences, Engineering and Medicine published a report in
2020 (NASEM 2020), describing a framework for the equi-
table allocation of COVID-19 vaccines. It is worth noting
that this report was written at a time when no COVID-19
vaccines had yet been approved by the US FDA. Thus, the
recommendations of the report were primarily meant to be
used in the early stages of the pandemic, when the demand
for vaccines was far in excess of the supply. The report de-
scribed 3 ethical principles that form the foundation of any
allocation policy:
• Maximum benefit: the overall goal of vaccine alloca-

tion, namely the obligation to protect and promote pub-
lic health and socioeconomic well-being in the short and
long term.

• Equal concern: the requirement that every individual be
treated as having “equal dignity, worth, and value.”

• Mitigation of health inequities: the requirement to ex-
plicitly take into account the higher burden of COVID-
19 experienced by some subpopulations, including the
elderly, rural, racial minorities, etc., due to greater sus-
ceptibility, exposure and worse access to healthcare.

In some settings, these principles may appear to be in ten-
sion with each other. For example, the report elaborates that
the principle of equal concern does not prevent prioritizing
people’s social roles (for example, emergency responder) or
mitigating the greater burden of diseases experienced by cer-
tain subpopulations. To ensure that the public has an under-
standing of how these principles are applied and such ten-
sions are addressed, the report also describes 3 procedural
principles.
Fairness: requires engagement with all stakeholders, espe-

cially those most affected by the pandemic.
Transparency: requires clear, accurate, and timely com-

munication about allocation policies, even as they are de-



veloped.
Evidence-based: requires that the allocation framework

and policies are based on the best and most up-to-date
scientific evidence.

Other agencies (e.g., WHO and Johns Hopkins University)
developed similar frameworks (World Health Organization
2020; Toner et al. 2020) and subsequently states and local-
ities in the US (NMDOH 2020; CDPH 2020; MichiganD-
HHS 2020; TexasDSHS 2020) developed more specific and
concrete versions better suited to their regional context.

The overall goal of this paper is to translate these ethical
and procedural principles into a computational framework
that can be used by regional public health departments to
equitably allocate vaccines during the initial stages of a pan-
demic. Our specific contributions are as follows:

(a) We present a fine-grained, data-driven model in which
all individuals in a region (e.g., a county) are modeled as
agents and their demographic features, household mem-
bership and location, job type and location, etc., are esti-
mated from the American Community Survey Public Use
Microdata Sample (PUMS) dataset from the US Census
Bureau (USCensus 2025b). Using shared household and
workplace membership along with techniques described
in (Tulchinsky et al. 2024), we then construct an agent-
based contact network. Using geographic locations of in-
dividuals’ households, the model additionally incorpo-
rates individual social vulnerability and healthcare ac-
cess – all of which are estimated from data sources (CDC
2021b; HRSA 2025; USCensus 2025b) – into a state-of-
the-art agent-based model for the spread of COVID-19.

(b) We focus on outcome disparity (as opposed to alloca-
tion disparity) and formalize this notion for a given pro-
tected class. In our context, outcomes refer to becoming
infected, becoming severely infected and requiring hos-
pitalization, or becoming critically ill and possibly dy-
ing from the infection. Focusing on outcome disparity is
technically more challenging than focusing on disparity
in allocations, but outcomes are what the main stakehold-
ers, i.e., the public being vaccinated, care most about.
Both our model and the optimization formulations (see
below) take the protected class as given and are agnos-
tic to this choice. The protected class can be defined in
many different ways, e.g., using demographic features,
geography, type of work, etc.

(c) Our goal is to find an allocation of a limited supply of
vaccines such that their overall effectiveness is maxi-
mized while disease-related outcomes for the protected
class are not much worse than the outcomes for the over-
all population.
We present two alternate combinatorial optimization for-
mulations of this problem. In the first formulation, we
aim to maximize the benefit of vaccine allocation – de-
fined as a linear combination of bad outcomes averted
and outcome equity achieved for the protected class –
while satisfying a budget constraint on the number of
allocated vaccines. This formulation is inspired by the
problem of maximizing a submodular function subject to
a cardinality constraint (Nemhauser, Wolsey, and Fisher

1978). In the second formulation, we aim to minimize
the cost of vaccine allocation – defined as a linear com-
bination of outcome disparity achieved for the protected
class and number of vaccines allocated – while satisfying
a coverage constraint that ensures that sufficiently many
bad outcomes are averted. This formulation is inspired by
the submodular cost submodular cover (SCSC) problem
(Wan et al. 2010; Crawford, Kuhnle, and Thai 2019)

(d) We present simple, scalable greedy algorithms for both
problem formulations. We also present a simulated an-
nealing algorithm for our first formulation, which we
evaluate in comparison with the greedy algorithm.

(e) We experimentally evaluate our modeling approach,
problem formulations, and algorithms for disparity-
aware vaccine allocation in Johnson County, Iowa. Our
experiments lead to two main takeaways. First, it is pos-
sible to substantially reduce disparity in the outcomes of
the protected class (for various choices of this class) with
negligible worsening in overall disease-prevalence. In
fact, this is possible to achieve using the simple, greedy
algorithms mentioned above. Second, it is critical for
disparity to be considered at all stages of the computa-
tional framework. More specifically, incorporating dis-
parity into the optimization formulation without consid-
ering it in the modeling stage has very limited value.

We have designed all components of our computational
framework, i.e., modeling, optimization formulations, and
algorithms, to be i) transparent, ii) flexible, and iii) extend-
able. More specifically, our framework can easily incorpo-
rate various geographic scales, different definitions of the
protected class and disparity, arbitrary disease models, other
optimization formulations, and other algorithms. All of this
allows for easy adaptation of our framework to disparate
public health scenarios. The framework is also designed to
be extended easily for the addition of entirely new com-
ponents, such as new vaccine allocation approaches or a
more explicit incorporation of vaccine distribution channels.
Our framework only uses publicly available data and all our
code, along with detailed documentation, is included in the
Supplementary Material1.

Mathematical Modeling
We focus on allocating vaccines equitably in a given region
of focus (e.g., a state or a county) that consists of a collec-
tion of smaller subregions (e.g., census tracts, census block
groups2). Within our region of focus, each subregion refers
to a geographical area along with its residents, infrastruc-
ture, homes, schools, workplaces, and hospitals.

We start by proposing a disparity-aware, agent-based,
computational framework for disease-spread, vaccine deliv-
ery, and response. Our model consists of the following 4

1Our code is available at https://zenodo.org/records/16783299
2The United States is organized into a hierarchical system of ge-

ographic units: each state is divided into counties, which are subdi-
vided into census tracts; these tracts are further divided into census
block groups, which are composed of individual blocks (Proximi-
tyOne 2024).



Figure 1: The four layers of disparity-aware, agent-based,
computational framework for disease-spread, vaccine deliv-
ery, and response.

layers (see Figure 1): (1) indices of health-associated vul-
nerability at the subregion level, (2) individual-level con-
tact network for the region’s population, (3) agent-based
disease-spread model for COVID-19 incorporating health-
associated vulnerability indices, and (4) a vaccination deliv-
ery and response model. We describe each of these layers
separately below.

Health-associated Vulnerability Indices
We use two indices in our work.
• Socioeconomic Social Vulnerability Index: The Social

Vulnerability Index (SVI) is a widely used measure de-
veloped by the Agency for Toxic Substances and Disease
Registry within the CDC that indicates the relative vul-
nerability of each census tract in the United States (CDC
2021b). The SVI is used to identify communities that
are particularly susceptible to be disproportionately dam-
aged in events such as natural disasters and disease out-
breaks. SVI values are calculated using a wide range of
community characteristics, from data on socioeconomic
status, household characteristics, racial and ethnic minor-
ity status, and housing type and transportation. A rela-
tionship between SVI values and population-level health
outcomes in clinical, surgical, mortality, or health promo-
tion areas is well-established (Higginbotham et al. 2025).
Previous research has also demonstrated that SVI is posi-
tively correlated with COVID-19 prevalence (Biggs et al.
2021; Karaye and Horney 2020). Figure 2A shows SVI
values at the census tract granularity for Johnson County,
Iowa. The figure illustrates that central and southern re-
gions have a higher relative SVI (corresponding to worse
health outcomes), and we note that the southwest cor-
ner of Johnson County is a particularly rural part of the
county.

• Treatment Accessibility Index: The Treatment Accessi-
bility Index (TAI) is an index that measures accessibil-

Figure 2: Vulnerability index values for Johnson County,
Iowa, where a higher value indicates a higher relative vul-
nerability. The subplots show (A) SVI values at a census
tract granularity (24 census tracts), and (B) TAI values at
a census block group granularity (72 census block groups)
with a catchment radius of 60 minutes.

ity of healthcare for each census block group. We use a
Gaussian two step floating catchment area (Ga2SFCA)
(Ye et al. 2024) method, which combines hospital ca-
pacity and population demand within travel-time catch-
ment areas, weighted by a Gaussian decay function to
reflect distance (the derivation of which may be found in
the full paper (Keithley, Bonner, and Pemmaraju 2025)).
The score for each census block group then takes all the
hospitals within a distance threshold (including hospitals
outside the region of focus, lying in neighboring regions)
into account, weighted by their distance to the centroid
of the census block group. Here, we use hospital location
data from (HRSA 2025), which includes precise location
and capacity. The “distance” in this context is the time
it takes to drive from one point to another, which is de-
termined from (OSRM 2010; Luxen and Vetter 2011).
From Figure 2B, it is clear that the value of TAI, like that
of SVI, is relatively high in the southwest corner of the
county. The north central part of Johnson County has rel-
atively easy access to hospitals in Ceder Rapids, Iowa,
which is just to the north of Johnson county (USCensus
2021).

Contact Network
A high-quality representation of the contact patterns within
a region is crucial to effectively model the spread of disease
within that region with high-granularity (Tulchinsky et al.
2024). We model the contact patterns of Johnson County,
Iowa, as a contact network, which we refer to as G = (V,E).
Each node in G represents an individual with an associated
set of attributes, such as age, sex, industry type, and grade
level in school. The region of focus contains locations for
entities such as homes, schools, workplaces, and hospitals.
Each individual is associated with a set of these entities,
such as the home they reside in or the school they go to.
In essence, a contact network must reflect the following:

(i) Population level statistics and geographic distributions
of attributes such as age, size of household, occupa-
tion, and race/ethnicity.

(ii) Relative levels of contact within and between demo-



graphic groups.

We use GreasyPop (Tulchinsky et al. 2024), which is
an open-source package designed to construct realistic
individual-level contact networks. GreasyPop takes the fol-
lowing steps to reflect the required elements of the contact
network (described above):

(1) The first step in creating the contact network is to con-
struct a synthetic population which fulfills the require-
ments of (i). GreasyPop achieves this by using simu-
lated annealing (Kirkpatrick, Gelatt, and Vecchi 1983)
to match the joint distributions of the aforementioned
population attributes, the specific aggregated statistics
of which are provided by Public Use Microdata Sample
(PUMS) data (USCensus 2025b).

(2) The synthetic population is then used to build the set
of pairwise interactions between nodes (individuals) to
form the edges of the contact network. GreasyPop con-
structs these edges conditioned on previously estab-
lished levels of contact between individuals specific to
age (Prem, Cook, and Jit 2017; Prem et al. 2021), school
settings (Mossong et al. 2008), and varying types of
workplaces (Gaffney et al. 2023).

The result is a contact network that reflects the specific
population distributions and levels of contact in a geograph-
ical region. For this paper, the contact network is static (un-
changing over time), undirected (if node A has contact with
node B, then the reverse is also true), and unweighted (no
values are associated with edges).

Property Value
Number of nodes 145, 984
Number of edges 920, 034
Average degree 6.3
Number with high (> 0.8) SVI 15, 898
Number with high (> 0.8) TAI 23, 141
Number of essential workers 34, 579

Table 1: Key properties of the synthetic population and con-
tact network

In addition, we amplify the relative level of contact within
workplaces classified as “essential”. In general, industries
are classified using the North American Industry Classifica-
tion System (NAICS) (USCensus 2025a), where a two-digit
NAICS code represents a general industry, such as mining
(21) or information services (51). For this paper, we classify
the following groups as high-exposure essential workers ac-
cording to (CDC 2021a; OSHA 2025): health care and social
assistance (NAICS code 62), accommodation and food ser-
vices (NAICS code 72), retail trade (NAICS codes 44,45),
and transportation, warehousing, and utilities (NAICS codes
48, 49, 22). We increase the relative contact rates within es-
sential workplaces through the following steps: i) identify
subgraphs corresponding to each essential industry in each
census block group, and ii) add contacts within each of those
subgraphs to increase their relative contact rates.

Figure 3: Disease state transitions and their probabilities.
The possible states for each individual are Susceptible,
Exposed, Presymptomatic, Asymptomatic, Mild infection,
Severe infection, Critical infection, Recovered, and Dead.
(inspired by (Kerr et al. 2021) Figure 2)

Disparity-Aware Disease-Spread Model
One of the most commonly used methods for modeling the
spread of disease is the homogeneous-mixing compartmen-
tal model (Kermack and McKendrick 1927), which works
by partitioning a population into disease states (called com-
partments), and defining rules for the rate at which the pop-
ulation changes between disease states. For instance, the
rate at which susceptible individuals become infected at a
given point in time is determined by a parameter govern-
ing the transmissibility of the disease and the concentra-
tion of already infected individuals in the population. While
this classical model assumes homogeneous mixing, we use
a compartmental agent-based model (ABM) that assumes
that individuals transition between different disease states
and “mixing” within the population occurs according to the
contact network described earlier (Kiss, Miller, and Simon
2017; Germann et al. 2006; Bissett et al. 2021).

Model Specification. We employ CovaSim (Kerr et al.
2021), which is a sophisticated COVID-19 ABM that has
been used extensively to support policy decisions (Cohen
et al. 2020; Panovska-Griffiths et al. 2020; Scott et al. 2020).
This model assumes that each individual who is initially sus-
ceptible may get infected, at which point they are considered
exposed for an amount of time sampled from a log-normal
distribution (known as the latent period). At the end of the
latent period, they become mildly symptomatic with a pa-
rameterized probability, otherwise they proceed to a asymp-
tomatic infection state.

Infectivity Dynamics. CovaSim uses a base infectivity
value β as the probability that an infected individual will
successfully infect a susceptible individual given a contact
between them. In addition, the viral load of each individ-
ual scales the infectiousness. We denote the viral load of
individual v at τ days since infection as ξτv , drawn from a
negative binomial distribution with mean 1.0 and shape pa-
rameter 0.45, implying that the viral load is initially high
before falling (Kerr et al. 2021). CovaSim scales the prob-
ability each susceptible individual v will get infected by an
individual-specific value referred to as the relative suscepti-
bility, denoted rsusv . By default, the age of each individual is
one attribute that contributes to their relative susceptibility.
For example, individuals who are 80+ years of age are 1.47
times more likely to get infected given a contact with an in-
fected individual than their 20-59 year old counterparts. In
summary, an infected agent u will successfully infect sus-



ceptible agent v given a contact between them with proba-
bility β · ξτu · rsusv . Note that here “infected” refers to any
individual who enters the Exposed compartment, indepen-
dent of whether they show symptoms.

In addition to susceptibility, individual infection severity
can be adjusted as well. Individuals who are symptomatic
may progress to a severe infection state, then a critical in-
fection state, and finally death if they do not recover. Each
mildly infected individual will become severely infected
with probability psev, each severely infected individual will
become critically infected with probability pcri, and each
critically infected individual will die with probability pdea.
The durations between those four states is sampled from a
log-normal distribution, and each individual in an infected
state can transition to recovery if they do not proceed to each
subsequent infection state. These transitions are shown in
Figure 3.

Incorporating Vulnerability into CovaSim. In this sec-
tion, we describe how the SVI and TAI definitions of vulner-
ability (described above) are incorporated into the CovaSim
disease model.

(1) First, each individual is assigned a vulnerability score
according to the vulnerability index value associated
with the subregion where they reside. When using SVI
as a basis for the protected class definition, we define
sSVI
v to be the normalized SVI value for v’s home cen-

sus tract 3. Similarly, we define sTAI
v to be the normal-

ized TAI value for v’s home census block group when
using TAI as a basis for the protected class.

(2) We then define a function to transform a vulnerability
score into a value that can be incorporated into the dis-
ease model. L(·) is a parameterized sigmoid function,
which increases above 1 with an increasing vulnerabil-
ity score, and decreases below 1 once vulnerability dips
below a certain threshold. The motivation behind this
vulnerability scaling function is to incorporate dispar-
ity into the disease model without altering the overall
prevalence as a result. A more comprehensive descrip-
tion of the function L(·) may be found in the full paper
(Keithley, Bonner, and Pemmaraju 2025).

(3) When using SVI as the basis for protected class, we
scale the relative susceptibility rsusv (described above)
of each individual v ∈ V by L(·): rsusv as rsusv ←
rsusv · L(sSVI

v ), where L(·) is described above.
(4) Similarly, we scale the severity of disease for each in-

dividual v according the same function. CovaSim de-
notes the probability of each individual progressing
from symptomatic to severe, severe to critical, and from
critical to death as psevv , pcriv , and pdeav , respectively.
Thus, we scale each of these values in the same man-
ner as above, as p∗v ← p∗v · L(sTAI

v ).

Vaccination Model
As mentioned earlier, this paper considers vaccine alloca-
tion at the very early stages of an outbreak. In other words,
a small number of individuals in the population are initially

3SVI data is only available at a census tract level granularity

infected and this is known to the vaccine allocation algo-
rithm. We assume that the region’s public health department
is tasked with distributing vaccines to the regions’ popula-
tion. We allow for two possible settings: (i) either the re-
gion’s public health department receives a fixed number of
vaccines, specified by a vaccine budget D or (ii) there is no
hard constraint on the number of available vaccines, but the
public health department incurs a cost for each vaccine it
receives. We assume that region’s population is partitioned
into a collection U of subpopulations. Let x ∈ ZU

+ be a vac-
cine allocation, where each element of the allocation vector
x encodes the number of shipments of vaccines to allocated
to each subpopulation. This partition U of a region’s popula-
tion into subpopulations can be based on geography, e.g., the
population of a state can be partitioned into subpopulations,
one per county in the state. But this partition could also be
based on other characteristics of the individuals in the pop-
ulation, e.g., work type, age, etc. We assume that a random
subset of each subpopulation takes advantage of the vaccines
allocated to that subpopulation. This setting, in which a ran-
dom subset of a subpopulation (instead of specific targeted
individuals) is vaccinated has been called the group vaccine
allocation problem (Zhang et al. 2016). We refer to the spe-
cific policy used to allocate vaccines within each subpopu-
lation as a local allocation policy. Thus, a group vaccine al-
location policy is composed of a number of local allocation
policies, one for each subpopulation. In its simplest form a
local allocation policy is just uniform, i.e., every individual
in the subpopulation is equally likely to receive a vaccine.
But, we may also consider non-uniform local allocation poli-
cies. For example, within each subpopulation we might re-
quire that the probability that individuals 65+ years of age
receive a vaccine is 5 times the probability that younger indi-
viduals receive a vaccine. To simplify our setting, we assume
that (i) vaccine uptake is 100%, i.e., all allocated vaccines
are used up and (ii) immunity acquired from vaccination is
perfect. Both of these assumptions are relatively simple to
relax.

Problem Formulations
One goal of this paper is to examine methods that allocate
a limited number of vaccines to subpopulations within a re-
gion to decrease overall disease prevalence while ensuring
that a protected group is not disproportionately affected.

Our approach to achieving this goal is through two math-
ematical formulations. First, we maximize the proportion of
infections averted minus a weighted disparity subject to a
given vaccine budget. In this formulation, the goal is to max-
imize the number of infections averted, but without making
disparity too high. Our second formulation minimizes the
“cost” of a vaccine allocation, which is defined as a linear
combination of the disparity and number of vaccines allo-
cated, while keeping the fraction of infections averted above
a threshold. In this formulation, we don’t have a “hard” bud-
get constraint; instead we view both disparity and the num-
ber of vaccines allocated as different types of cost. To further
discuss these formulations, we need some definitions.

In addition, a subset P ⊆ V of the population is desig-
nated as the protected class. The choice of P is indepen-



dent of the partition of the population V into subpopula-
tions. For example, the subpopulations may be defined by
geography, while P may be defined by age or by type of
work, e.g., P may be the set of all essential workers in the
population. We use f I(x) to denote the expected propor-
tion of infected individuals in the population, as a func-
tion of x, the vaccine allocation vector4. In other words,
f I(x) counts (in expectation) all individuals who enter com-
partments Mil (Mild infection) or A (Asymptomatic infec-
tion). Note that the expectation here is over the stochastic-
ity of the disease-spread model. Similarly, we define fS(x),
fC(x), and fD(x) respectively as the expected proportion
of the population that becomes severely infected, critically
infected, or dies, given the vaccine allocation vector x. Let
gI(x) = 1 − f I(x)/f I(0) be the expected proportion of
infections averted by vaccine allocation x, where f I(0) is
the proportion of individuals infected with no vaccine al-
location. Similarly, corresponding to the other versions of
the function f , i.e., fS(x), fC(x), and fD(x), we de-
fine gS(x), gC(x), and gD(x) as the expected proportions
of severe infections averted, critical infections averted, and
deaths averted (respectively) by the vaccine allocation vec-
tor x. Note that it is not too difficult to incorporate more
sophisticated versions of these notions into our formula-
tion. For example, in literature on optimizing vaccine alloca-
tion (Medlock and Galvani 2009; Emanuel and Wertheimer
2006), authors have considered assigning a weight to each
individual based on the productive years cut short by death.
For notational convenience, we drop the superscripts from
the functions f(x) and g(x), except when the specific bad
outcome (e.g., critical infection, death, etc.) matters for our
discussion.

Additionally, for some P ⊆ V , let fP (x) and gP (x) de-
note the infection prevalence and proportion of infections
averted, respectively, in S. We are also given a vaccine bud-
get D ∈ Z+ that denotes the number of shipments of vac-
cines we are allowed to allocate in total.

Definition of Disparity. Recall that our focus is on out-
come disparity; we aim to ensure, via appropriate vaccine
allocation, that bad outcomes for the protected class are not
much worse than these outcomes for the overall population.
This motivates either considering a difference measure of
disparity or a ratio measure of disparity. More specifically,
one can define disparity as a difference in some metric of
bad outcomes between the protected class and the general
population. One can alternately, use a ratio measure instead
of a difference measure. Motivated by prior research (Yeh
et al. 2024; Ye et al. 2024; Yi and Marathe 2015) that a ratio
definition of fairness provides scale-invariant properties that
can help prevent misleading outcomes that can occur with
difference definitions of fairness, we use a ratio definition in
this paper. More precisely, we define disparity as the ratio of
infection prevalence in the protected population to infection

4Note that to be fully correct, f(x) should be denoted f(x |
A, I0) because the spread of infection is conditioned on disease
model A and the set I0 of initially infected individuals. Usually, A
and I0 will be understood from the context, so it is convenient to
drop A and I0 from the notation.

prevalence in the remainder of the population.

dP (x) = max

(
1,

fP (x)

fV \P (x)

)
(1)

For example, a disparity value of 2.0 indicates that the pro-
tected population has twice the infection prevalence of the
rest of the population, while a value of 1.5 represents a 50%
higher infection rate. The max(1, ·) elements ensures that
when the protected population has lower or equal infection
prevalence compared to the rest of the populated, the dis-
parity is capped at 1 to prevent over-correction. Recall that
earlier, multiple variants of the function f have been defined,
i.e., f I(x), fS(x), fC(x), and fD(x) corresponding to mild
infections, severe infections, critical infections, and death.
Each of these induces a corresponding notion of disparity,
which we denote respectively as dIP (x), d

S
P (x), and dDP (x).

We are now ready to present the specific formulations of
the Equitable Vaccine Allocation (EVA) problem.

Equitable Vaccine Allocation Formulation 1 (EVA-1): In
our first formulation (see the box EVA-1 below), we maxi-
mize the proportion of infections averted minus a weighted
disparity, i.e., gV (x)−α·dP (x), subject to a vaccine budget.
For the remainder of the paper, we use bα(x) := gV (x)−α ·
dP (x) for the disparity-aware “benefit” of the vaccine allo-
cation vector x. Clearly, this formulation favors allocations
that save a lot of individuals and reduce disparity. When the
weight α = 0, this formulation ignores disparity. As α in-
creases, the formulation becomes more “disparity aware”.

This simple formulation is inspired by the classical and
well-studied problem of maximizing a submodular “cover”
function subject to a cardinality constraint (Nemhauser,
Wolsey, and Fisher 1978). Submodularity refers to the “di-
minishing returns” property of set or lattice functions, which
can lead to guarantees in the performance of greedy algo-
rithms (Nemhauser, Wolsey, and Fisher 1978). However, the
objective function bα(x) of EVA-1 is not submodular and
this rich theory of submodular function optimization does
not apply to EVA-1.

EVA-1

max
x∈ZU

+

bα(x) := gV (x)− α · dP (x)

s.t. ∥x∥ ≤ D

Equitable Vaccine Allocation Formulation 2 (EVA-2):
Formulation 2 (see the box EVA-2 below) is inspired by the
Submodular Cost Submodular Cover (SCSC) problem (Iyer
and Bilmes 2013; Wan et al. 2010; Crawford, Kuhnle, and
Thai 2019), which minimizes a cost function while ensuring
that a cover function has a high enough value.

For our formulation, the cost function is defined by a lin-
ear combination of the disparity (Equation (1)) and the size
of the vaccine allocation, i.e., γ ·dP (x)+ (1−γ) · ∥x∥/|V |.
For the remainder of the paper, we use cγ(x) to denote this
objective function. Notice that unlike in EVA-1, we don’t
have a “hard” budget constraint. We treat the number of vac-
cines allocated as a type of cost, along with disparity. The



cover function is simply defined as gV (x), the proportion of
infections averted, and this is required to be at least a mini-
mum threshold value τ . Thus the overall effectiveness of the
vaccination is ensured by this coverage constraint. It is worth
emphasizing that even though our problem formulation is in-
spired by the SCSC problem, neither our cost function nor
our cover function are submodular and therefore the perfor-
mance guarantees in (Iyer and Bilmes 2013; Wan et al. 2010;
Crawford, Kuhnle, and Thai 2019) do not apply to EVA-2.

EVA-2

min
x∈ZU

+

cγ(x) := γ · dP (x) + (1− γ) · ∥x∥
|V |

s.t. gV (x) ≥ τ

Having alternate formulations with different parameter-
izations and hard constraints provides flexibility to policy
makers and they can use one or the other depending on the
real-world constraints they are working with. This is ad-
vantageous to the modeler and the algorithm-designer as
well who can pick an appropriate formulation depending on
availability of data and tractability of algorithms.

Algorithms
We consider three algorithms to solve EVA; two variants
of the greedy algorithm and the simulated annealing meta-
heuristic, all of which we describe in this section.

UNITGREEDY is the first and most straightforward greedy
algorithm we present. It assumes the input of a single objec-
tive function to be maximized subject to a budget, and in
each iteration, allocates one shipment at a time to the sub-
population that provides the most marginal gain in the ob-
jective function. The algorithm continues in this way un-
til the vaccine budget is exhausted. Informally, the algo-
rithm starts with an “empty allocation” to evaluate where
sending a single shipment of vaccines would do the most
good (defined by bα(x) described above). This algorithm
then chooses where to send that single shipment, and re-
peats this process of selecting the subpopulation that adds
the most value one at a time until it has used all available
vaccines. With each decision made, the algorithm uses dis-
ease model to measure the benefit. The running time for
UNITGREEDY is O(|V | ·D · θ), where θ is the running time
of a single disease model evaluation given a vaccine allo-
cation (Keithley et al. 2024). We run the maximization step
on line 3 in parallel, so in practical terms, the running time
is O(max(1, ⌊|V |/T ⌋) · D · θ), where T is the number of
computing threads available.

The next greedy algorithm we consider is RA-
TIOGREEDY, which finds an approximate solution to For-
mulation 2 by iteratively selecting the subpopulation to send
a shipment of vaccines which maximizes the ratio of the
marginal gain of infections averted to the cost. If the cost
function was monotone (i.e., increases with each addition to
the input), we could simply stop the algorithm when the re-
quirement gV (x) ≥ τ is fulfilled. Since the cost function
is not monotone, we must run the greedy algorithm until

Algorithm 1: UNITGREEDY(D)
1: x← 0
2: while ∥x∥1 < D do
3: k∗ ← argmax

k∈V
bα(x+ ek)− bα(x)

4: x← x+ ek∗

5: end while
6:
7: return x

Algorithm 2: RATIOGREEDY(τ )
1: x← 0
2: F ← {x}
3: while ∥x∥1 < |V | do
4: k∗ ← argmax

k∈V

gV (x+ek)−gV (x)
c(x+ek)

5: xk∗ ← xk∗ + 1
6: F ← F ∪ {x}
7: end while
8: x∗ = argmin

x∈F
{c(x) | gV (x) ≥ τ}

9:
10: return x∗

the entire population is vaccinated, then select the allocation
with the lowest cost which fulfills the threshold constraint.
Because of the necessity to check all allocation sizes for
EVA-2, RATIOGREEDY has running time O(|V |2 · θ), with
a parallelized running time of O(max(1, ⌊|V |/T ⌋) · |V | · θ).

We also consider SIMULATEDANNEALING, which is a
randomized algorithm designed to imitate metallurgical an-
nealing (Kirkpatrick, Gelatt, and Vecchi 1983) and explore
the solution spaces of problems that have many local minima
(due to space being limited, the pseudocode is presented in
the full paper (Keithley, Bonner, and Pemmaraju 2025)). It
begins with a random initial solution (randomly allocate a
vaccine budget to subpopulations) and iteratively considers
similar solutions generated by random perturbations, which
are performed by moving a small number of vaccine ship-
ments from one randomly selected subpopulation to another.
If the algorithm finds a solution better than what it has so far,
it accepts that new solution. In order to escape local minima,
SIMULATEDANNEALING can also accept solutions that are
worse (if no better solution is found) with a probability that
gets smaller as the algorithm progresses. This probability is
a function of the “temperature”, which is lowered with each
iteration, so it is less likely to accept worse solutions as the
algorithm progresses.

Results
In this section, we experimentally evaluate our model, prob-
lem formulations, and algorithms for disparity-aware vac-
cine allocation in Johnson County, which is located in East-
ern Iowa. Johnson County (population 152,854 according
to the 2020 US Census5; 24 census tracts; 72 census block

5The contact network has ∼ 7K fewer individuals represented
because its construction uses the 2019 American Community Sur-



groups) includes Iowa City, which is the home of the Univer-
sity of Iowa. Because of the university, the population skews
young, but a substantial fraction of the county is rural. Al-
most 11% of the population lives in census tracts with SVI
above 0.8 and despite a comprehensive University-based
medical center at the University of Iowa, almost 16% of
the population lives in census block groups with TAI above
0.8. See Table 1 for more details. We define three protected
classes for our experiments:

• SVI-based: Individuals residing in census tracts with So-
cial Vulnerability Index (SVI) above 0.8.

• TAI-based: Individuals residing in census block groups
with Treatment Accessibility Index (TAI) above 0.8. The
TAI definition presented here uses a hospital catchment
radius of 60 minutes.

• Essential workers: Individuals employed in retail, trans-
portation, education, healthcare, or food service.

The correlation between high SVI and poor health outcomes
in general (Higginbotham et al. 2025) and higher preva-
lence of COVID-19 (Biggs et al. 2021; Karaye and Horney
2020) motivates the definition of the SVI-based protected
class. The definition of a TAI-based protected class is an at-
tempt to explicitly identify groups of individuals with rel-
atively poor healthcare access, taking travel time and ca-
pacity of healthcare facilities into account. The definition
of the Essential workers protected class is motivated by the
poor health outcomes of essential workers during COVID-
19 (Gaitens et al. 2021). We first present what we refer
to as our basic experiment: using UNITGREEDY to solve
EVA-1 with an SVI-based protected class definition. We use
α = 0, 0.1, 0.3 and 0.5 for the basic experiment and all
experiments involving EVA-1. We call algorithms solving
EVA-1 with α = 0 disparity-oblivious. Algorithms solv-
ing EVA-1 with α > 0 are called disparity-aware. We then
present 5 additional experiments that extend the basic exper-
iment as follows: i) extending the protected class definition
to TAI-based and essential workers, ii) evaluating the impor-
tance of incorporating disparity into the disease model, iii)
comparing the results of UNITGREEDY for EVA-1 to that of
RATIOGREEDY for EVA-2, iv) evaluating the performance
of SIMULATEDANNEALING compared to UNITGREEDY for
EVA-1, and v) assessing the impact of adding a subregion-
level policy which prioritizes older individuals and essential
workers at vaccination sites. Results for a wider variety of
settings may be found in the full paper (Keithley, Bonner,
and Pemmaraju 2025).

Improved Outcomes for SVI-based Protected Class
Figure 4 shows the results of the basic experiment, with sub-
figure A showing the infection prevalence f I(x) and sub-
figure B showing the disparity dIP (x). These experiments
show that, over all vaccine allocation budgets considered
(0% to 50% of the population) the infection prevalence of
the disparity-aware algorithms is at most 3% higher than the
infection prevalence of the disparity-oblivious algorithm. On
the other hand, the disparity-aware algorithms for higher α

vey, which uses different sampling methods than the Census.

Figure 4: Results from using UNITGREEDY on EVA-1, with
an SVI-based protected class, for budgets of up to 50% of
the population vaccinated. (A) shows the overall infection
prevalence f I(x) and (B) shows the disparity dIP (x).

(α = 0.3, 0.5, shown in red with triangle and diamond mark-
ers) reduce disparity very quickly; disparity stays below 1
after 5% of the population has been vaccinated. Disparity
falls for the disparity-oblivious algorithm also, but more
slowly; about 15% of the population needs to be vaccinated
before disparity falls below 1 for this algorithm. At 5% vac-
cination, all disparity-aware algorithms have achieved dis-
parity 1, whereas the disparity-oblivious algorithm has a dis-
parity of 1.4. In general, higher values of α achieve lower
values of disparity than lower values of α, without raising
the infection prevalence for the overall population substan-
tially.

Improved Outcomes for TAI-based Protected Class
and Essential Workers
Figure 5 and Figure 6 show outcomes using the same setup
as the previous subsection, but using TAI-based and es-
sential worker based protected classes, respectively. Here,
prevalence and disparity (fS(x) and dS(x)) for the TAI-
based protected class are in terms of serious infections,
while prevalence and disparity (f I(x) and dI(x)) for the
essential worker protected class are in terms of overall in-
fections.

Figure 5 shows that using UNITGREEDY to solve EVA-1
reduces disparity quickly for the disparity-aware algorithm
for nonzero values of α, while disparity decreases slightly
more slowly for the disparity-oblivious algorithm but does
not consistently stay below 1. The disparity-aware algorithm
with α = 0.5 results in at most a 1% higher level of severe
infections as compared to the disparity-oblivious algorithm,
but we note that the disparity-aware algorithm using α = 0.1
and α = 0.3 achieves a severe infection prevalence almost at
low as that of the disparity-oblivious algorithm, while keep-
ing disparity below 1.

As shown in Figure 6, the disparity-aware algorithm with
α = 0.5 achieves a lower infection prevalence that the
other algorithms, while also achieving the lowest disparity.
Every algorithm is eventually able to achieve equity, but
the disparity-aware algorithm with α = 0.5 and α = 0.3
achieve it with about 10% fewer vaccines than the disparity-
oblivious or disparity-aware algorithm with α = 0.1. This
indicates that in certain cases, the disparity-aware algorithm
can reach a vaccine allocation that is both more equitable
and averts more infections than the disparity-oblivious algo-
rithm.



Figure 5: Results from using UNITGREEDY on EVA-1, with
a TAI-based protected class, for budgets of up to 50% of
the population vaccinated. (A) shows the overall infection
prevalence fS(x) and (B) shows the disparity dSP (x).

Figure 6: Results from using UNITGREEDY on EVA-1, with
an essential worker based protected class, for budgets of up
to 50% of the population vaccinated. (A) shows the over-
all infection prevalence f I(x) and (B) shows the disparity
dIP (x).

Disparity-aware Modeling is Crucial
The goal of this subsection is to show the importance
of incorporating disparity into the disease model used to
make vaccine allocation decisions. Here, we run dispar-
ity=oblivious and disparity-aware algorithms using UNIT-
GREEDY conditioned on a model that ignores all factors of
disparity (which we shall refer to as the disparity-unadjusted
disease model) discussed in the Modeling section. We then
evaluate the resulting vaccine allocations using the model
that does account for disparity, which we call the disparity-
adjusted disease model. In general, we call this comparison
cross-evaluation, and we use it to demonstrate outcomes that
result from making vaccination allocation decisions without
the knowledge of how those decisions affect disparity.

As shown in Figure 7, UNITGREEDY achieves an infec-
tion prevalence similar to that of the basic experiment with
both disparity-oblivious and disparity-aware algorithms, but
all perform far worse with respect to disparity. The protected
class experiences infection rates up to about 3 times higher
than the rest of the population, and the disparity increases
with as the vaccine budget grows.

Notably, both disparity-oblivious and disparity-aware al-
gorithms exhibit similar infection prevalence rates as in pre-
vious subsections across all vaccine budgets, demonstrating
that a dual goal to reduce infections and minimize disparity
does not compromise effectiveness. This highlights the im-
portance of incorporating disparity into our disease model,
as we can achieve substantially lower disparity while main-
taining a similar level of infections averted. These results
also show how allocation strategies that appear effective

Figure 7: Results from using UNITGREEDY (cross evalu-
ated) on EVA-1, with an SVI-based protected class, for bud-
gets of up to 50% of the population vaccinated. (A) shows
the overall infection prevalence f I(x) and (B) shows the dis-
parity dIP (x).

Figure 8: Results from using UNITGREEDY on EVA-1, with
an SVI-based protected class, for budgets of up to 50% of
the population vaccinated and compared with results from
the same setup using RATIOGREEDY. (A) shows the over-
all infection prevalence f I(x) and (B) shows the disparity
dIP (x).

from a high-level perspective may inadvertently aggravate
significant health disparities when underlying disparities are
not accounted for in the modeling process.

UNITGREEDY Trades Efficiency for Disparity
Compared to RATIOGREEDY

So far, we have focused solely on evaluating UNITGREEDY
applied to EVA-1. Here, we compare those results to that
of RATIOGREEDY applied to EVA-2. In particular, for each
fixed value of α (we show results for α = 0.5 here), we find
a corresponding value of γ in EVA-2 that results in a similar
infection prevalence for each vaccine budget. Note that we
do not consider a disparity-oblivious algorithm here - we are
only comparing the disparity-aware algorithm with α = 0.5
to results from RATIOGREEDY applied to EVA-2.

Figure 8 demonstrates that UNITGREEDY and RA-
TIOGREEDY achieve close performance in terms of infec-
tion prevalence. The highest difference is at a 30% vaccine
budget, where UNITGREEDY results in about 5% higher in-
fection prevalence than that of RATIOGREEDY. This comes
with the advantage of UNITGREEDY consistently achieving
a lower disparity than RATIOGREEDY, although the dispar-
ity for RATIOGREEDY is never above about 1.1 for vaccine
budgets of over 10%. Overall, this result suggests that UNIT-
GREEDY applied to EVA-1 is better suited for balancing ef-
ficiency and equity than RATIOGREEDY but may sacrifice
efficiency in some cases.



Figure 9: Results from using UNITGREEDY on EVA-1, with
an SVI-based protected class, for budgets of up to 50% of
the population vaccinated and compared with results from
the same setup using SIMULATEDANNEALING. (A) shows
the overall infection prevalence f I(x) and (B) shows the dis-
parity dIP (x).

SIMULATEDANNEALING Shows Similar Trends
In this subsection, we evaluate the performance of SIMU-
LATEDANNEALING compared to that of the UNITGREEDY,
both disparity-aware with α = 0.5 applied to EVA-1. We
use the SVI-based protected class and run the algorithms
for vaccine budgets between 0% and 50%. Figure 9 shows
UNITGREEDY and SIMULATEDANNEALING result in close
infection prevalence for vaccine budgets of over 30%, but
UNITGREEDY achieves an infection prevalence of about 7%
lower than that of SIMULATEDANNEALING for a 20% vac-
cine budget. This result does not come in the form of a trade-
off between effectiveness and equity, since UNITGREEDY
lowers disparity below 1 with fewer vaccines than SIM-
ULATEDANNEALING, although both methods consistently
have a low disparity with a vaccine budget of greater than
10%. These results reinforce the general effectiveness of us-
ing a disparity-aware UNITGREEDY algorithm for equitable
vaccine allocation.

A Local Allocation Policy Targeting Essential
Workers and Older Individuals
So far, we have only considered settings in which the vac-
cines allocated to a subregion are distributed to the members
of its population uniformly at random (i.e., every member of
the subregion’s population has an equal chance of receiving
one of the vaccines distributed to that subregion). In general,
we refer to the method that determines which individuals re-
ceive one of a subregion’s assigned vaccines as a local allo-
cation policy. In this experiment, we explore a non-uniform
local allocation policy, where vaccines are distributed with
preference to individuals older than 65 and essential work-
ers, where those groups are 5 times more likely to receive a
vaccine from a shipment allocated to their home subregion.
We consider this local allocation policy where vaccines are
allocated to each subregion by UNITGREEDY using the es-
sential worker based protected class.

Figure 19 shows that both disparity-aware and disparity-
oblivious algorithms using UnitGreedy achieve similar re-
sults regardless of α, with all values of α producing nearly
identical infection prevalence and disparity outcomes across
all vaccine budgets. This suggests that the local allocation
policy used here protects the essential worker protected class

Figure 10: Results from using UNITGREEDY (cross evalu-
ated) on EVA-1, with an essential worker based protected
class, for budgets of up to 50% of the population vaccinated.
(A) shows the overall infection prevalence f I(x) and (B)
shows the disparity dIP (x).

effectively, making the regional disparity consideration gov-
erned by α less influential on the results, indicating that
targeted local allocation can achieve equity goals indepen-
dently of the regional optimization approach.

Discussion

Our primary focus of this paper is to translate existing ethical
vaccine allocation frameworks (NASEM 2020; Toner et al.
2020; World Health Organization 2020) into a computa-
tional framework using modern mathematical modeling and
optimization methods. Through this translation, we enable
public health decision-makers to leverage computational re-
sources for working towards equity goals within established
policy frameworks. Our framework prioritizes transparency,
flexibility, and extendability. Our results demonstrate how
explicitly incorporating disparity into disease modeling and
allocation methods can reduce disparity without worsening
health outcomes in the general population. While we focus
on a specific setting (allocating vaccines along geographi-
cal lines to Johnson County, Iowa) in our experiments, our
framework is general and can be adapted or extended along
multiple dimensions.

Several limitations merit consideration. We make sev-
eral simplifying assumptions to keep our paper focused. We
assume perfect vaccine acceptance and efficacy; the for-
mer is reasonable when demand exceeds supply, but not in
general. Our framework could readily incorporate empiri-
cal data on vaccine hesitancy, demographic-specific efficacy
rates, or logistical constraints that limit vaccine delivery to
certain subpopulations. Our current approach focuses on a
specific definition of health disparity, but alternative defi-
nitions (e.g., Gini index, Slope Inequality Index) merit ex-
ploration. Future work could also include the protection of
multiple groups at once. Our focus on preemptive allocation
decisions, while practical for vaccine allocation at the early
stages of a pandemic, could be extended to non-preemptive
settings, where allocations need to be made over time. Fu-
ture extensions could incorporate real-time manufacturing
constraints, distribution bottlenecks, or adaptive allocation
strategies that respond to changing epidemiological condi-
tions. Finally, future work could also explore other, more
fine-grained models for vaccine allocation.



Ethical Impact
Our research relies on population and epidemiological data,
raising several ethical considerations. First, individual-level
data must be properly anonymized to protect privacy, follow-
ing established practices such as those used by the American
Community Survey. While aggregate distributions should
reflect real-world patterns, no personally identifiable infor-
mation should be included in allocation algorithms.

Inaccurate or biased population data can lead to in-
equitable vaccine allocation decisions that may systemati-
cally disadvantage certain communities. Similarly, errors in
disease surveillance data or epidemiological modeling can
misrepresent disease spread patterns, potentially directing
vaccines away from areas of greatest need. We emphasize
the critical importance of using high-quality, representative
data sources and regularly validating model assumptions
against observed outcomes.

Positionality Statement
The authors’ expertise lies in the area of computer science
and optimization applied to problems in infectious disease
modeling and intervention. While well-versed in techniques
for studying disease computationally, the authors acknowl-
edge gaps in their expertise with regards to real-world imple-
mentation. To date, the authors have sought feedback from
experts in fields such as infectious disease, biostatistics, and
epidemiology, but feel additional feedback from and con-
structive discussion with practitioners in public health would
be very helpful.

Broader Impact
We discuss potential adverse impacts of the research out-
lined in this paper in two directions: i) unintentional adverse
impacts and ii) intentional adverse impacts.

i) Our framework is intended for use in regional public
health departments alongside expert decision-makers
who can use it as a decision-support tool. Rigid adher-
ence to recommendations made by any framework (in-
cluding ours) may reduce responsiveness to local con-
ditions, community needs, or emerging equity concerns
during implementation. Since modeling a complex sys-
tem such as disease spread has inherent uncertainty and
cannot fully capture all details, our framework should
serve as a starting point for informed decisions rather
than a substitute for expert judgment and community
engagement.

ii) While intended as a tool to decrease disparity in dis-
ease outcomes, our framework may be used to justify
discriminatory practices under the guise of scientific
objectivity. To prevent intentional misuse, we empha-
size that all model parameters, assumptions, and trade-
offs should be made transparent to stakeholders and
communities. Our framework should never be used as
a “black box” to avoid accountability for allocation
decisions or to circumvent community engagement in
policy-making.
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Appendix A: Methods
Treatment Accessibility Index Derivation
The Ga2SFCA method calculates hospital accessibility in
two steps. Step 1: The capacity-to-population ratio Hj

within a (travel time) search radius Cr is calculated for each
hospital j as follows:

Hj =
Sj∑

k∈{tjk≤Cr} Dkg(tjk)
(2)

where Sj is the number of beds in hospital j, Dk is the de-
mand represented by the population in census block group k
within the catchment area of j. g(tjk) is a Gaussian distance
decay function, expressed as:

g(tij) =
e−

1
2 (tij/Cr)

2 − e−
1
2

1− e−
1
2

, tij ≤ Cr (3)

where tij is the travel time between the spatial centroid
of census block group i and hospital j, Cr is the maximum
time each individual may travel for care (from their resident
census block group’s centroid as a starting point).

Step 2: Calculate the hospital accessibility Ai for each
census block group i:

A′
i =

∑
j∈{tij≤Cr}

Hjg(tij) (4)

=
∑

j∈{tij≤Cr}

Sjg(tij)∑
k∈{tjk∈Cr} Dkg(tjk)

(5)

In (Ye et al. 2024), a larger value of A′
i indicates bet-

ter hospital accessibility for a census block group, but our
framework is set up to interpret higher values as more vul-
nerable, so we invert the index so that Ai = 1 − A′

i, where
A′

i is normalized to a [0, 1] range.

Susceptibility Scaling Function
Here, we describe the logistic function L : sv → R+ used
to scale the relative susceptibility to infection dependent on
vulnerability indices. sv refers to the specific measure of
vulnerability for individual v ∈ V , and L(sv) is a scal-
ing factor used to scale their relative susceptibility to infec-
tion given contact. We use this function to scale suscepti-
bility for the SVI and TAI definitions of vulnerability. Let
ℓmin ∈ [0, 1) and ℓmax ∈ (1,∞) be the minimum and max-
imum values that susceptibility may be scaled to, respec-
tively. Let z denote the value of sv at which L(sv) = 1, de-
noting the point where sv causes susceptibility to decrease



as opposed to increase as a result of vulnerability score. Fi-
nally, let m denote the rate at which susceptibility climbs
with respect to an increase in vulnerability (e.g., L(sv) be-
comes more linear with small m and resembles a step func-
tion at large m).
Definition 1. The logistic vulnerability scaling function
L(sv) is defined by

L(sv) = ℓmin + (ℓmax − ℓmin)
1

1 + e−z(sv−C)
(6)

where

C = z +
1

m
ln

(
ℓmax − 1

1− ℓmin

)
(7)

Simulated Annealing Algorithm

Algorithm 3: SIMULATEDANNEALING(D,T0, Tmin, ω)

1: x← RANDOMALLOCATION(D)
2: x∗ ← x
3: T ← T0

4: while T > Tmin do
5: x′ ← N(x)
6: if h(x′) > h(x) then
7: x← x′

8: if h(x′) > h(x∗) then
9: x∗ ← x′

10: else
11: r ∼ U(0, 1)
12: if r < exp

(
h(x′)−h(x)

T

)
then

13: x← x′

14: end if
15: end if
16: end if
17: T ← ω · T
18: end while
19:
20: return x∗

Appendix B: Additional Results
Disparity-aware Modeling is Crucial

Figure 11: Results from using UNITGREEDY on EVA-1,
with a TAI-based protected class, for budgets of up to 50%
of the population vaccinated. (A) shows the overall infection
prevalence fS(x) and (B) shows the disparity dSP (x).

Figure 12: Results from using UNITGREEDY on EVA-1,
with an essential worker based protected class, for budgets
of up to 50% of the population vaccinated. (A) shows the
overall infection prevalence f I(x) and (B) shows the dis-
parity dIP (x).

UNITGREEDY Trades Efficiency for Disparity
Compared to RATIOGREEDY

Figure 13: Results from using UNITGREEDY on EVA-1,
with an SVI-based protected class, for budgets of up to 50%
of the population vaccinated and compared with results from
the same setup using RATIOGREEDY. (A) shows the over-
all infection prevalence f I(x) and (B) shows the disparity
dIP (x).



Figure 14: Results from using UNITGREEDY on EVA-1,
with a TAI-based protected class, for budgets of up to 50%
of the population vaccinated and compared with results from
the same setup using RATIOGREEDY. (A) shows the over-
all infection prevalence fS(x) and (B) shows the disparity
dSP (x).

Figure 15: Results from using UNITGREEDY on EVA-1,
with an essential worker based protected class, for budgets
of up to 50% of the population vaccinated and compared
with results from the same setup using RATIOGREEDY. (A)
shows the overall infection prevalence f I(x) and (B) shows
the disparity dIP (x).



SIMULATEDANNEALING Shows Similar Trends

Figure 16: Results from using UNITGREEDY on EVA-1,
with an SVI-based protected class, for budgets of up to 50%
of the population vaccinated and compared with results from
the same setup using SIMULATEDANNEALING. (A) shows
the overall infection prevalence f I(x) and (B) shows the dis-
parity dIP (x).

Figure 17: Results from using UNITGREEDY on EVA-1,
with a TAI-based protected class, for budgets of up to 50%
of the population vaccinated and compared with results from
the same setup using SIMULATEDANNEALING. (A) shows
the overall infection prevalence fS(x) and (B) shows the
disparity dSP (x).



Figure 18: Results from using UNITGREEDY on EVA-1,
with an essential worker based protected class, for budgets
of up to 50% of the population vaccinated and compared
with results from the same setup using SIMULATEDAN-
NEALING. (A) shows the overall infection prevalence f I(x)
and (B) shows the disparity dIP (x).

A Local Allocation Policy Targeting Essential
Workers and Older Individuals

Figure 19: Results from using UNITGREEDY on EVA-1,
with an essential worker based protected class, for budgets
of up to 50% of the population vaccinated. (A) shows the
overall infection prevalence f I(x) and (B) shows the dis-
parity dIP (x).
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